Log-convexity of Aigner–Catalan–Riordan numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bell Numbers, Log-concavity, and Log-convexity

Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...

متن کامل

Log–convexity of Combinatorial Sequences from Their Convexity

A sequence (xn)n 0 of positive real numbers is log-convex if the inequality xn xn−1xn+1 is valid for all n 1 . We show here how the problem of establishing the log-convexity of a given combinatorial sequence can be reduced to examining the ordinary convexity of related sequences. The new method is then used to prove that the sequence of Motzkin numbers is log-convex.

متن کامل

A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers

The Catalan-like numbers cn,0, defined by cn+1,k = rk−1cn,k−1 + skcn,k + tk+1cn,k+1 for n, k ≥ 0, c0,0 = 1, c0,k = 0 for k 6= 0, unify a substantial amount of well-known counting coefficients. Using an algebraic approach, Zhu showed that the sequence (cn,0)n≥0 is log-convex if rktk+1 ≤ sksk+1 for all k ≥ 0. Here we give a combinatorial proof of this result from the point of view of weighted Mot...

متن کامل

Log-convexity and log-concavity of hypergeometric-like functions

We find sufficient conditions for log-convexity and log-concavity for the functions of the forms a 7→ ∑ fk(a)kx , a 7→ ∑ fkΓ(a + k)x k and a 7→ ∑ fkx k/(a)k. The most useful examples of such functions are generalized hypergeometric functions. In particular, we generalize the Turán inequality for the confluent hypergeometric function recently proved by Barnard, Gordy and Richards and log-convexi...

متن کامل

Convexity and Log Convexity for the Spectral Radius

The starting point of this paper is a theorem by J. F. C. Kingman which asserts that if the entries of a nonnegative matrix are log convex functions of a variable then so is the spectral radius of the matrix. A related result of J. Cohen asserts that the spectral radius of a nonnegative matrix is a convex function of the diagonal elements. The first section of this paper gives a new, unified pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2014

ISSN: 0024-3795

DOI: 10.1016/j.laa.2014.09.007